Around 2015, companies in the Netherlands started migrating their on-premise data warehouses to the public cloud. When doing this, it is important to realise that it is not always logical for the deployed physical data models to remain the same as they were in on-premise systems. The new technological possibilities not only allow new approaches, but can also cause anti-patterns within existing physical modelling techniques such as Dimensional modelling (Kimball) or Data Vault. Or you just need a slightly different approach to implement these techniques. The goal of this session is to give insight into the (im)possibilities in this area, looking at how this can be practically tackled within solutions like Snowflake or Google BigQuery.
Examples of physical data modelling topics we will cover:
Session highlights
“Longer sessions created room for more depth and dialogue. That is what I appreciate about this summit.”
“Inspiring summit with excellent speakers, covering the topics well and from different angles. Organization and venue: very good!”
“Inspiring and well-organized conference. Present-day topics with many practical guidelines, best practices and do's and don'ts regarding information architecture such as big data, data lakes, data virtualisation and a logical data warehouse.”
“A fun event and you learn a lot!”
“As a BI Consultant I feel inspired to recommend this conference to everyone looking for practical tools to implement a long term BI Customer Service.”
“Very good, as usual!”